廣西戴氏教育 來源:互聯(lián)網 時間:2021-07-22 23:47:54 點擊:1次
數(shù)學是高考考試中能拉分的學科,很多學生的數(shù)學成績難以提高往往是因為沒有掌握好大綱要求掌握的考點,為了幫助大家復習好這些考點,下面秦學教育網為大家?guī)砀呖紨?shù)學必考點【雙曲線方程】講解,希望高考生能夠認真閱讀。
雙曲線方程
1. 雙曲線的第一定義:
⑴①雙曲線標準方程:. 一般方程:.
⑵①i. 焦點在x軸上:
頂點: 焦點: 準線方程 漸近線方程:或
ii. 焦點在軸上:頂點:. 焦點:. 準線方程:. 漸近線方程:或,參數(shù)方程:或 .
②軸為對稱軸,實軸長為2a, 虛軸長為2b,焦距2c. ③離心率. ④準線距(兩準線的距離);通徑. ⑤參數(shù)關系. ⑥焦點半徑公式:對于雙曲線方程(分別為雙曲線的左、右焦點或分別為雙曲線的上下焦點)
“長加短減”原則:
構成滿足(與橢圓焦半徑不同,南寧一對一輔導,橢圓焦半徑要帶符號計算,而雙曲線不帶符號)
⑶等軸雙曲線:雙曲線稱為等軸雙曲線,其漸近線方程為,離心率.
⑷共軛雙曲線:以已知雙曲線的虛軸為實軸,實軸為虛軸的雙曲線,叫做已知雙曲線的共軛雙曲線.與互為共軛雙曲線,它們具有共同的漸近線:.
⑸共漸近線的雙曲線系方程:的漸近線方程為如果雙曲線的漸近線為時,它的雙曲線方程可設為.
例如:若雙曲線一條漸近線為且過,求雙曲線的方程?
解:令雙曲線的方程為:,代入得.
⑹直線與雙曲線的位置關系:
區(qū)域①:無切線,南寧輔導班,2條與漸近線平行的直線,合計2條;
區(qū)域②:即定點在雙曲線上,1條切線,南寧一對一補習,2條與漸近線平行的直線,合計3條;
區(qū)域③:2條切線,2條與漸近線平行的直線,合計4條;
區(qū)域④:即定點在漸近線上且非原點,1條切線,1條與漸近線平行的直線,合計2條;
區(qū)域⑤:即過原點,無切線,無與漸近線平行的直線.
小結:過定點作直線與雙曲線有且僅有一個交點,可以作出的直線數(shù)目可能有0、2、3、4條.
(2)若直線與雙曲線一支有交點,交點為二個時,求確定直線的斜率可用代入法與漸近線求交和兩根之和與兩根之積同號.
⑺若P在雙曲線,則常用結論1:P到焦點的距離為m = n,則P到兩準線的距離比為m︰n.
簡證: =.
常用結論2:從雙曲線一個焦點到另一條漸近線的距離等于b.
高考數(shù)學必考點【雙曲線方程】講解秦學教育網為大家?guī)磉^了,希望高考生能夠在記憶這些考點的時候多下功夫,這樣在考試的時候就能熟練應用。
免責聲明:①凡本站注明“本文來源:廣西戴氏教育”的所有文字、圖片和音視頻稿件,版權均屬本網所有,任何媒體、網站或個人未經本網協(xié)議授權不得轉載、鏈接、轉貼或以其他方式復制發(fā)表。已經本站協(xié)議 授權的媒體、網站,在下載使用時必須注明“稿件來源:廣西戴氏教育”,違者本站將依法追究責任。②本站注明稿件來源為其他媒體的文/圖等稿件均為轉載稿,本站轉載出于非商業(yè)性的教育和科研之目的,并不 意味著贊同其觀點或證實其內容的真實性。如轉載稿涉及版權等問題,請作者在兩周內速來電或來函聯(lián)系。